If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-14x=90
We move all terms to the left:
x^2-14x-(90)=0
a = 1; b = -14; c = -90;
Δ = b2-4ac
Δ = -142-4·1·(-90)
Δ = 556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{556}=\sqrt{4*139}=\sqrt{4}*\sqrt{139}=2\sqrt{139}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{139}}{2*1}=\frac{14-2\sqrt{139}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{139}}{2*1}=\frac{14+2\sqrt{139}}{2} $
| 3z/7+3=-1 | | 5y-15=3y+11 | | 9h=+7=79 | | 17d-3d-9d-3d-d+4=41 | | 29s-15s+3s-11s-2=46 | | x+2(2x+3)-1=½(4x+28) | | 9z^2+16=24z | | 9u+8u-2u+9u-4u=20 | | 0.1x^2-x-18=0 | | 150*x=1350 | | (4x-8)/3-1(7+5x)/9=9 | | (3x-1)/5-7(x+2)/6+8=5 | | 456+x=257,5 | | 4=w/3-16 | | x+2/3x=49 | | 6x+16=3-7x | | 7x+6=+2x | | 9-8x+1x-4=2x+1-x | | s^2+10s+25=256 | | 1/x-1/1-x=2 | | 5x+24=3(x+8)+3x | | 10x-3=0,0001 | | 0,25x+3=16x-6 | | 7x-2=1/7 | | 4a+12=2a+23 | | X2+11x-28=0 | | 2x3x=48 | | 8x-5=9(6-x) | | 20-2a=16 | | 20+2a=16 | | 20-4a=16-2a | | 20+c=1/2(8c+14) |